Skip to main content
Log in

An Evolutionary Perspective of Sex-Typed Toy Preferences: Pink, Blue, and the Brain

  • Published:
Archives of Sexual Behavior Aims and scope Submit manuscript

Abstract

Large sex differences in children's toy preferences are attributed to gender group identification and social learning. The proposal outlined in this paper is that contemporary conceptual categories of “masculine” or “feminine” toys are also influenced by evolved perceptual categories of male-preferred and female-preferred objects. Research on children exposed prenatally to atypical levels of androgens and research on typically developing infants suggest sex-dimorphic preferences exist for object features, such as movement or color/form. The evolution and neurobiology of mammalian visual processing—and recent findings on sex-dimorphic toy preferences in nonhuman primates—suggest further that an innate bias for processing object movement or color/form may contribute to behaviors with differential adaptive significance for males and females. In this way, preferences for objects such as toys may indicate a biological preparedness for a “masculine” or “feminine” gender role—one that develops more fully as early perceptual preferences are coupled with object experiences imposed by contemporary gender socialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, G. M., & Hines, M. (1994). Gender labels and play styles: Their relative contribution to children's selection of playmates. Child Development, 65, 869–879.

    Google Scholar 

  • Alexander, G. M., & Hines, M. (2002). Sex differences in response to children's toys in nonhuman primates (Cercopithecus aethiops sabaeus). Evolution and Human Behavior, 23, 467–469.

    Google Scholar 

  • Alexander, G. M., Packard, M. G., & Peterson, B. S. (2002). Sex and spatial position effects on object location memory following intentional learning of object identities. Neuropsychologia, 40, 1516–1522.

    Google Scholar 

  • Bachevalier, J., & Hagger, C. (1991). Sex differences in the development of learning abilities in primates. Psychoneuroendocrinology, 16, 177–188.

    Google Scholar 

  • Bailey, J. M., & Zucker, K. J. (1995). Childhood sex-typed behavior and sexual orientation: A conceptual analysis and quantitative review. Developmental Psychology, 31, 43–55.

    Google Scholar 

  • Bauer, J. A., Shimojo, S., Gwizada, J., & Held, R. (1986). Sex differences in the development of human infants. Investigative Ophthalmology and Visual Sciences, 27, 265–273.

    Google Scholar 

  • Benenson, J. F., Liroff, E. R., Pascal, S. J., & Cioppa, G. D. (1997). Propulsion: A behavioural expression of masculinity. British Journal of Developmental Psychology, 15, 37–50.

    Google Scholar 

  • Benenson, J. F., Morganstein, R., & Roy, R. (1998). Sex differences in children's investment in peers. Human Nature, 9, 369–390.

    Google Scholar 

  • Berenbaum, S. A. (1999). Effects of early androgens on sex-typed activities and interests in adolescents with congenital adrenal hyperplasia. Hormones and Behavior, 35, 102–110.

    Google Scholar 

  • Berenbaum, S. A., & Hines, M. (1992). Early androgens are related to childhood sex-typed toy preferences. Psychological Science, 3, 203–206.

    Google Scholar 

  • Berenbaum, S. A., & Resnick, S. M. (1997). Early androgen effects on aggression in children and adults with congenital adrenal hyperplasia. Psychoneuroendocrinology, 22, 505–515.

    Google Scholar 

  • Bjorklund, D. F., & Pellegrini, A. D. (2000). Child development and evolutionary psychology. Child Development, 71, 1687–1708.

    Google Scholar 

  • Born, R. T. (2001). Visual processing: Parallel-er and parallel-er. Current Biology, 11, R566–R568.

    Google Scholar 

  • Bornstein, M. H. (1985). On the development of color naming in young children: Data and theory. Brain and Language, 26, 72–93.

    Google Scholar 

  • Bornstein, M. H., Kessen, W., & Weiskopf, S. (1976). Color vision and hue categorization in young human infants. Journal of Experimental Psychology: Human Perception and Performance, 2, 115–129.

    Google Scholar 

  • Breedlove, S. M., Cooke, B. M., & Jordan, C. L. (1999). The orthodox view of brain sexual differentiation. Brain, Behavior and Evolution, 54, 8–14.

    Google Scholar 

  • Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of local circuits in human visual cortex. Journal of Neuroscience, 13, 1916–1931.

    Google Scholar 

  • Bussey, K., & Bandura, A. (1999). Social–cognitive theory of gender development and differentiation. Psychological Review, 106, 676–713.

    Google Scholar 

  • Campbell, D. W., & Eaton, W. O. (1999). Sex differences in the activity level of infants. Infant and Child Development, 8, 1–17.

    Google Scholar 

  • Campbell, A., Shirley, L., & Heywood, C. (2000). Infants' visual preference for sex-congruent babies, children, toys and activities: A longitudinal study. British Journal of Developmental Psychology, 18, 479–498.

    Google Scholar 

  • Carson, D. J., Okuno, A., Lee, P. A., Stetten, G., Didolkar, S. M., & Migeon, C. J. (1982). Amniotic fluid steroid levels: Fetuses with adrenal hyperplasia, 46, XXY fetuses, and normal fetuses. American Journal of Diseases of Children, 136, 218–222.

    Google Scholar 

  • Collaer, M. L., & Hines, M. (1995). Human behavioral sex differences: A role for gonadal hormones during early development? Psychological Bulletin, 118, 55–107.

    Google Scholar 

  • Connellan, J., Baron-Cohen, S., Wheelwright, S., Batki, A., & Ahluwalia, J. (2000). Sex differences in human neonatal social perception. Infant Behavior and Development, 23, 113–118.

    Google Scholar 

  • Connor, J. M., & Serbin, L. A. (1977). Behaviorally based masculine-and feminine-activity preferences scales for preschoolers: Correlates with other classroom behaviors and cognitive tests. Child Development, 48, 1411–1416.

    Google Scholar 

  • Cooke, B., Hegstrom, C. D., Villeneuve, L. S., & Breedlove, S. M. (1998). Sexual differentiation of the vertebrate brain: Principles and mechanisms. Frontiers in Neuroendocrinology, 19, 323–362.

    Google Scholar 

  • Corbier, P., Edwards, D. A., & Roffi, J. (1992). The neonatal testosterone surge: A comparative study. Archives Internationales de Physiologie, de Biochimie et de Biophysique, 100, 127–131.

    Google Scholar 

  • Dobkins, K. R., & Anderson, C. M. (2002). Color-based motion processing is stronger in infants than in adults. Psychological Science, 13, 76–80.

    Google Scholar 

  • Dominy, N. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410, 363–366.

    Google Scholar 

  • Duchaine, B., Cosmides, L., & Tooby, J. (2001). Evolutionary psychology and the brain. Current Opinion in Neurobiology, 11, 225–230.

    Google Scholar 

  • Eals, M., & Silverman, I. (1994). The hunter–gatherer theory of spatial sex differences: Proximate factors mediating the female advantage in location memory. Ethology and Sociobiology, 15, 95–105.

    Google Scholar 

  • Eisenberg, N., Murray, E., & Hite, T. (1982). Children's reasoning regarding sex-typed toy choices. Child Development, 53, 81–86.

    Google Scholar 

  • Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140, 296–297.

    Google Scholar 

  • Fausto-Sterling, A. (1992). Myths of gender: Biological theories about women and men. New York: Basic Books.

    Google Scholar 

  • Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14, 53–65.

    Google Scholar 

  • Hampson, E., Rovet, J. F., & Altmann, D. (1998). Spatial reasoning in children with congenital adrenal hyperplasia due to 21–hydroxylase deficiency. Developmental Neuropsychology, 14, 299–320.

    Google Scholar 

  • Held, R., Bauer, J., & Gwiazda, J. (1988). Age of onset of binocularity correlates with level of plasma testosterone in male infants. Investigative Ophthalmology and Visual Sciences 29, 60.

    Google Scholar 

  • Hellige, J. B., & Cumberland, N. (2001). Categorical and coordinate spatial processing: More on the contributions of the transient/ magnocellular visual system. Brain and Cognition 45, 155–163.

    Google Scholar 

  • Hendry, S. H. C., & Reid, R. C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience, 23, 127–153.

    Google Scholar 

  • Higley, J. D., Hopkins, W. D., Hirsch, R. M., Marra, L. M., & Suomi, S. M. (1987). Preferences of female rhesus monkeys (Macaca Mulatta) for infantile coloration. Developmental Psychobiology, 20, 7–18.

    Google Scholar 

  • Hines, M., & Kaufman, F. R. (1994). Androgen and the development of human sex-typical behavior: Rough-and-tumble play and sex of preferred playmates in children with congenital adrenal hyperplasia (CAH). Child Development, 65, 1042–1053.

    Google Scholar 

  • Iijima, M., Arisaka, O., Minamoto, F., & Arai, Y. (2001). Sex differences in children's free drawings: A study on girls with congenital adrenal hyperplasia. Hormones and Behavior, 40, 99–104.

    Google Scholar 

  • Jameson, K. A., Highnote, S. M., & Wasserman, L. M. (2001). Richer color experience in observers with multiple photopiment opsin genes. Psychonomic Bulletin and Review, 8, 244–261.

    Google Scholar 

  • Johnson, M. H. (2001). The development and neural basis of face recognition: Comment and speculation. Infant and Child Development, 10, 31–33.

    Google Scholar 

  • Johnson, M. H., & Morton, J. (1991). Biology and cognitive development: The case of face recognition. Oxford: Blackwell.

    Google Scholar 

  • Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Reviews in Neuroscience 23, 315–341.

    Google Scholar 

  • Kelly, S. J., Ostrowski, N. L., & Wilson, M. A. (1999). Gender differences in brain and behavior: Hormonal and neural bases. Pharmacology, Biochemistry and Behavior, 64, 655–664.

    Google Scholar 

  • Kovacs, I. (2000). Human development of perceptual organization. Vision Research, 40, 1301–1310.

    Google Scholar 

  • Kramer, J. H., Ellenberg, L., Leonard, J., & Share, L. J. (1996). Developmental sex differences in global–local perceptual bias. Neuropsychology, 10, 402–407.

    Google Scholar 

  • Liss, M. B. (1981). Patterns of toy play: An analysis of sex differences. Sex Roles, 7, 1143–1150.

    Google Scholar 

  • Livingstone, M. S., & Hubel, D. H. (1987). Psychosocial evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience, 11, 3416–3468.

    Google Scholar 

  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology and perception. Science, 240, 740–749.

    Google Scholar 

  • Maccoby, E. E. (1988). Gender as a social category. Developmental Psychology, 24, 755–765.

    Google Scholar 

  • Maccoby, E. E. (1990). Gender and relationships: A developmental account. American Psychologist, 45, 513–520.

    Google Scholar 

  • Maccoby, E. E. (1998). The two sexes: Growing up apart, coming together. Cambridge, MA: Belknap Press/Harvard University Press.

    Google Scholar 

  • MacLusky, N. J., Bowlby, D. A., Brown, T. J., Peterson, R. E., & Hochberg, R. B. (1997). Sex and the developing brain: Suppression of neuronal estrogen sensitivity by developmental androgen exposure. Neurochemical Research, 22, 1395–1414.

    Google Scholar 

  • Martin, C. L. (1989). Children's use of gender-related information in making social judgments. Developmental Psychology, 25, 80–88.

    Google Scholar 

  • Martin, C. L. (1999). A developmental perspective on gender effects and gender concepts. In W. B. SwannJr. & J. H. Langlois (Eds.), Sexism and stereotypes in modern society: The gender science of Janet Taylor Spence (pp. 45–73). Washington, DC: American Psychological Association.

    Google Scholar 

  • Martin, C. L., & Halverson, C. F. (1981). A schematic processing model of sex typing and stereotyping in children. Child Development, 52, 1119–1134.

    Google Scholar 

  • Martin, C. L., & Little, J. K. (1990). The relation of gender understanding to children's sex-typed preferences and gender stereotypes. Child Development, 61, 1427–1439.

    Google Scholar 

  • McClure, E. B. (2000). A meta-analytic review of sex differences in facial expression processing and their development in infants, children, and adolescents. Psychological Bulletin, 126, 424–453.

    Google Scholar 

  • Meaney, M. J. (1988). The sexual differentiation of social play. Trends in Neuroscience, 11, 54–58.

    Google Scholar 

  • Meaney, M. J., & McEwen, B. S. (1986). Testosterone implants into the amygdala during the neonatal period masculinize the social play of juvenile female rats. Brain Research, 398, 324–328.

    Google Scholar 

  • Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402.

    Google Scholar 

  • Miller, C. L. (1987). Qualitative differences among gender-stereotyped toys: Implications for cognitive and social development. Sex Roles, 16, 473–487.

    Google Scholar 

  • Miller, C. L., Younger, B. A., & Morse, P. A. (1982). The categorization of male and female voices in infancy. Infant Behavior and Development, 5, 143–159.

    Google Scholar 

  • Minamoto, F. (1985). Male-female differences in pictures. Tokyo: Shoseki.

    Google Scholar 

  • Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87.

    Google Scholar 

  • Mollon, J. D. (1986). Understanding colour vision. Nature, 321, 12–13.

    Google Scholar 

  • Morgan, M. J., Adam, A., & Mollon, J. D. (1992). Dichromats detect colour-camouflaged objects that are not detected by trichromats. Proceedings of the Royal Society of London—Series B: Biological Sciences, 248, 291–295.

    Google Scholar 

  • Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164–181.

    Google Scholar 

  • Nathans, J. (1999). The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron, 24, 299–312.

    Google Scholar 

  • Nathans, J., Thomas, D., & Hogness, D. S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science, 232, 193–202.

    Google Scholar 

  • Nelson, C. A. (2001). The development and neural bases of face recognition. Infant and Child Development, 10, 3–18.

    Google Scholar 

  • Nelson, C. A., & Horowitz, F. D. (1987). Visual motion perception in infancy: A review and synthesis. In P. Salapatek & L. Cohen (Eds.), Handbook of infant perception (pp. 123–153). New York: Academic Press.

    Google Scholar 

  • O'Brien, M., & Huston, A. C. (1985). Development of sex-typed play behavior in toddlers. Developmental Psychology, 21, 866–871.

    Google Scholar 

  • Ogueta, S. B., Schwartz, S. D., Yamashita, C. K., & Farber, D. B. (1999). Estrogen receptor in the human eye: Influence of gender and age on gene expression. Investigative Ophthalmology and Visual Science, 40, 1906–1911.

    Google Scholar 

  • Overman, W. H., Bachevalier, J., Schuhmann, E., & Ryan, P. (1996). Cognitive gender differences in very young children parallel biologically based cognitive gender differences in monkeys. Behavioral Neuroscience, 110, 673–684.

    Google Scholar 

  • Pichaud, F., Briscoe, A., & Desplan, C. (1999). Evolution of color vision. Current Opinion in Neurobiology, 9, 622–627.

    Google Scholar 

  • Pomerleau, A., Bolduc, D., Malcuit, G., & Cossette, L. (1990). Pink or blue: Environmental gender stereotypes in the first two years of life. Sex Roles, 22, 359–367.

    Google Scholar 

  • Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominque, P., & Mollon, J. D. (2001). Fruits, foliage, and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London—Biological Sciences, 356, 229–283.

    Google Scholar 

  • Resnick, S. M., Berenbaum, S. A., Gottesman, I. I., & Bouchard, T. J. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Developmental Psychology, 22, 191–198.

    Google Scholar 

  • Roth, E. C., & Hellige, J. B. (1998). Spatial processing and hemispheric asymmetry: Contributions of the transient/magnocellular visual system. Journal of Cognitive Neuroscience 10, 472–484.

    Google Scholar 

  • Ruble, D. N., & Martin, C. L. (1998). Gender development. In W. Damon (Series Ed.) and N. Eisenberg (Vol. Ed.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (5th ed., pp. 933–1016). New York: Wiley.

    Google Scholar 

  • Salyer, D. L., Lund, T. D., Fleming, D. E., Lephart, E. D., & Horvath, T. L. (2001). Sexual dimorphism and aromatase in the rat retina. Developmental Brain Research, 126, 131–136.

    Google Scholar 

  • Serbin, L. A., Poulin-Dubois, D., Colburne, K. A., Sen, M. G., & Eichstedt, J. A. (2001). Gender stereotyping in infant: Visual preferences for and knowledge of gender-stereotyped toys in the second year of life. International Journal of Behavioral Development, 25, 7–15.

    Google Scholar 

  • Shyue, S.-K., Hewett-Emmett, D., Sperling, H. G., Hunt, D. M., Bowmaker, J. K., Mollon, J. D., et al. (1995). Adaptive evolution of color vision genes in higher primates. Science, 269, 1265–1267.

    Google Scholar 

  • Silverman, I., Choi, J., MacKewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: Further studies on the hunter–gatherer theory of spatial sex differences. Evolution and Human Behavior, 21, 201–213.

    Google Scholar 

  • Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind (pp. 533–549). New York: Oxford.

    Google Scholar 

  • Tarr, M. J., Kersten, D., Cheng, Y., & Rossion, B. (2001, May). It's Pat! Sexing faces using only red and green. Paper presented at the annual meeting of the Vision Sciences Society, Sarasota, FL.

  • Teller, D. Y. (1998). Spatial and temporal aspects of infant color vision. Vision Research, 38, 3275–3282.

    Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical pathways. In D. J. Ingle, M. A. Goodale, & Mansfield, R. J. W. (Eds.), Analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Watson, N. V., & Kimura, D. (1991). Nontrivial sex differences in throwing and intercepting: Relation to psychometrically-defined spatial functions. Personality and Individual Differences, 12, 375–385.

    Google Scholar 

  • Wilson, J. D. (1999). The role of androgens in male gender role behavior. Endocrine Reviews, 20, 726–737.

    Google Scholar 

  • Zucker, K. J., & Bradley, S. J. (1995). Gender identity disorder and psychosexual problems in children and adolescents. New York: Guilford Press.

    Google Scholar 

  • Zucker, K. J., Bradley, S. J., Oliver, G., Blake, J., Fleming, S., & Hood, J. (1996). Psychosexual development of women with congenital adrenal hyperplasia. Hormones and Behavior, 30, 300–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerianne M. Alexander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, G.M. An Evolutionary Perspective of Sex-Typed Toy Preferences: Pink, Blue, and the Brain. Arch Sex Behav 32, 7–14 (2003). https://doi.org/10.1023/A:1021833110722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021833110722

Navigation